
JORNADES-TALLER SOBRE CÀLCUL D'ESTRUCTURES D'ARQUITECTURES HISTÒRIQUES

A cargo del profesor Francisco Jurado, arquitecto

Estas jornadas van dirigidas a profesionales relacionados con la restauración y conservación de edificios patrimoniales. El objetivo de las mismas es proporcionar los conocimientos fundamentales que permitan evaluar la estabilidad y el grado de seguridad estructural de la construcción que se esté analizando. También se trata de dotar de criterios y herramientas sencillas que permitan definir intervenciones de refuerzo y/o mejora de la seguridad.

Las jornadas se desarrollan durante cuatro días con dos sesiones de 4 horas por día, mañana y tarde. Las mañanas se dedicarán fundamentalmente a la exposición de una mínima teoría y de casos prácticos de aplicación y discusión de los métodos y herramientas que se expongan. Las tardes se dedicarán a taller de clases prácticas tuteladas desarrollando el alumno ejercicios concretos relacionados con lo expuesto.

Sólo es necesario tener una base mínima de conocimientos de cálculo vectorial y tensional, habituales por otro lado en los profesionales que trabajan en la consolidación de estructuras históricas, así como un dominio básico de hoja de cálculo (Excel, OpenOffice) y de algún entorno gráfico (AutoCAD, ArchiCAD, MicroStation). En las jornadas se entregarán textos de apoyo y algunas aplicaciones en formato Excel.

CONCEPTOS FUNDAMENTALES. MUROS, FUNDACIONES Y ESTABILIDAD AL VUELCO

BLOQUE TEÓRICO (2 h)

Presentación, introducción y breve reseña bibliográfica.

Fuerzas y cálculos vectoriales, gráfica y analíticamente.

Excentricidad y momentos. Resultante de un sistema de fuerzas y obtención del centro de gravedad.

Acumulación de cargas. Tensiones medias y tensiones cobaricéntricas.

Materiales tradicionales: densidades y resistencias características.

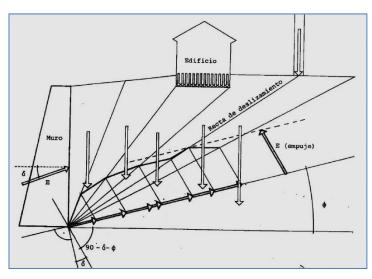
Acciones habituales: peso propio, sobrecargas, viento y sismo. Valores característicos.

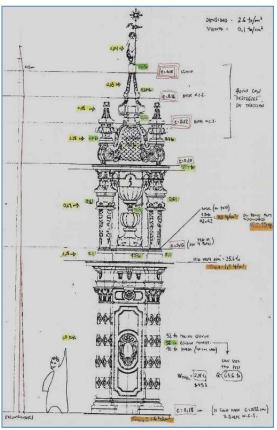
Comprobación gráfica y analítica de la estabilidad al vuelco.

Obtención de empujes del terreno, analítica y gráficamente.

EJEMPLOS Y APLICACIONES (2 h)

Consolidación y refuerzo de muros: Sustituciones, inyecciones, zunchados.


Refuerzo de cimentaciones: Bataches, inyecciones, micropilotes.


Disposición de contrafuertes y atirantamientos de muros

EJERCICIOS (4 h)

Comprobación de la estabilidad ante el empuje de viento

Cálculo gráfico de empujes sobre un muro

BLOQUE TEÓRICO (2 h)

Polígono funicular y polígono de presiones.

El método de las resultantes sucesivas y las tensiones cobaricéntricas asociadas.

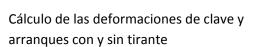
Disposición de tirantes.

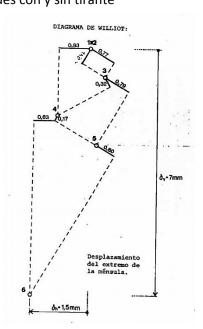
Estimación de las deformaciones, analítica y gráficamente.

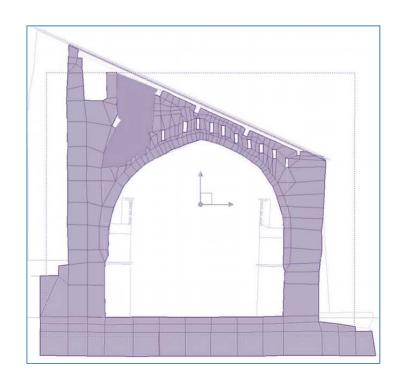
Diseño y cálculo de apeos. Cuándo pueden ser perjudiciales. Cómo des-apear.

EJEMPLOS Y APLICACIONES (2 h)

Cálculos de varios casos de arco-contrafuerte.


Ejemplos comparando método gráfico con utilización de modelo de barras y análisis matricial.


Exposición de obras de reparación de arcos.


Utilización de otros materiales y anastilosis.

EJERCICIOS (4 h)

Cálculo gráfico de un arco apuntado y su contrafuerte con peso de cubierta

BLOQUE TEÓRICO (2 h)

Toma de datos: geometría, catas, sondeos, endoscopias...

La representación tridimensional como herramienta para analizar la geometría.

Métodos gráficos y analíticos de cálculo de cúpulas.

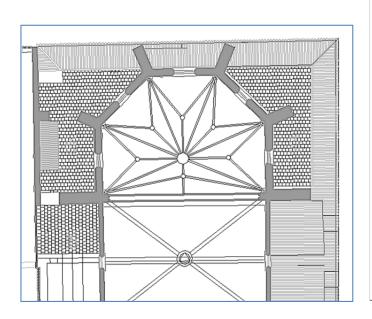
Cuándo el relleno puede llegar a estabilizar.

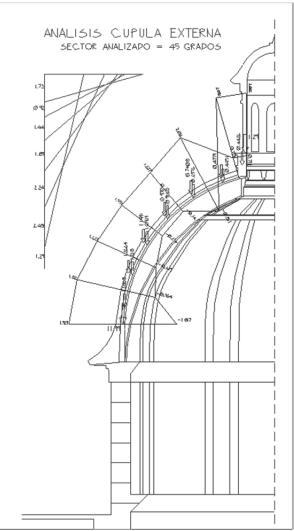
Discusión respecto a la utilización de modelos de elementos finitos.

EJEMPLOS Y APLICACIONES (2 h)

Exposición de casos de construcción de cúpulas de fábrica.

Casos de refuerzo de cúpulas fracturadas.


Refuerzos de bóvedas con geometría muy deformada.


Reconstrucción y completación de bóvedas con otros materiales.

EJERCICIOS (4 h)

Cálculo gráfico y analítico de cúpula de planta circular con linterna

Comprobaciones gráficas de los esfuerzos en un ábside gótico

BLOQUE TEÓRICO (2 h)

La madera y sus derivados en el mercado actual.

Caracterización de materiales y ensayos a flexotracción para la madera.

Monitorización y control de movimientos.

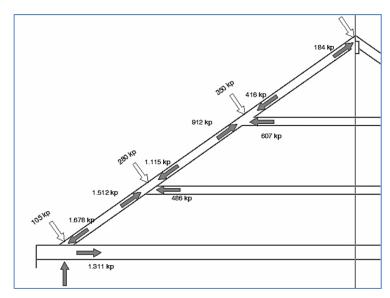
La lectura histórica y la variable tiempo.

Cálculos gráficos y posibilidad de modelos de barras para el cálculo automático.

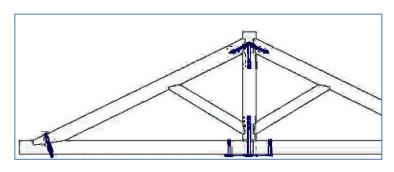
Cálculo de uniones y conectores para refuerzos

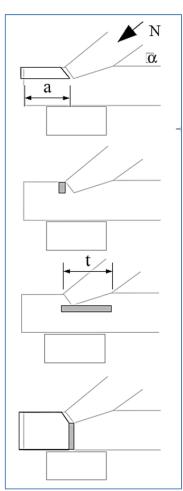
EJEMPLOS Y APLICACIONES (2 h)

Ejemplos de análisis de diversos entramados de madera.


Reparaciones mediante prótesis y laminados realizados in situ.

Refuerzos de forjados introduciendo conexión con otros materiales.


Utilización de la madera como nueva estructura dialogante con las fábricas históricas.


EJERCICIOS (4 h)

Cálculo de todos los esfuerzos en un entramado y obtención de las tensiones locales en sus uniones.

Disposición y dimensionado de refuerzos por fallo de uniones

